线程池作用就是限制系统中执行线程的数量。
根据系统的环境情况,可以自动或手动设置线程数量,达到运行的最佳效果;少了浪费了系统资源,多了造成系统拥挤效率不高。用线程池控制线程数量,其他线程排队等候。一个任务执行完毕,再从队列的中取最前面的任务开始执行。若队列中没有等待进程,线程池的这一资源处于等待。当一个新任务需要运行时,如果线程池中有等待的工作线程,就可以开始运行了;否则进入等待队列。
减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。
Java里面线程池的顶级接口是Executor,但是严格意义上讲Executor并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是ExecutorService。
Java通过Executors提供四种线程池,分别为:
newCachedThreadPool创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。
newFixedThreadPool 创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。
newScheduledThreadPool 创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。
newSingleThreadExecutor 创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。
案例
package com.hzj163.myexecutorservice;
import android.os.Handler;
import android.os.Message;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;
import java.lang.ref.WeakReference;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
public class MainActivity extends AppCompatActivity {
TextView textView1;
TextView textView2;
TextView textView3;
TextView textView4;
TextView textView5;
TextView textView6;
TextView textView7;
TextView textView8;
TextView textView9;
TextView textView10;
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
textView1 = (TextView) findViewById(R.id.textView1);
textView2 = (TextView) findViewById(R.id.textView2);
textView3 = (TextView) findViewById(R.id.textView3);
textView4 = (TextView) findViewById(R.id.textView4);
textView5 = (TextView) findViewById(R.id.textView5);
textView6 = (TextView) findViewById(R.id.textView6);
textView7 = (TextView) findViewById(R.id.textView7);
textView8 = (TextView) findViewById(R.id.textView8);
textView9 = (TextView) findViewById(R.id.textView9);
textView10 = (TextView) findViewById(R.id.textView10);
}
//消息机制
MyHandler handler = new MyHandler(new WeakReference<MainActivity>(MainActivity.this));
static class MyHandler extends Handler {
WeakReference<MainActivity> weakReference;
public MyHandler(WeakReference<MainActivity> weakReference) {
this.weakReference = weakReference;
}
@Override
public void handleMessage(Message msg) {
MainActivity temp = weakReference.get();
switch (msg.what) {
case 1:
temp.textView1.setText(msg.obj.toString());
break;
case 2:
temp.textView2.setText(msg.obj.toString());
break;
case 3:
temp.textView3.setText(msg.obj.toString());
break;
case 4:
temp.textView4.setText(msg.obj.toString());
break;
case 5:
temp.textView5.setText(msg.obj.toString());
break;
case 6:
temp.textView6.setText(msg.obj.toString());
break;
case 7:
temp.textView7.setText(msg.obj.toString());
break;
case 8:
temp.textView8.setText(msg.obj.toString());
break;
case 9:
temp.textView9.setText(msg.obj.toString());
break;
case 10:
temp.textView10.setText(msg.obj.toString());
break;
}
}
}
//线程业务
public void myServer(int what) {
for (int i = 0; i < 10; i++) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
Message message = handler.obtainMessage();
message.what = what;
message.obj = i;
message.sendToTarget();
}
}
//1号线程
Runnable runnable1 = new Runnable() {
@Override
public void run() {
myServer(1);
}
};
//2号线程
Runnable runnable2 = new Runnable() {
@Override
public void run() {
myServer(2);
}
};
//3号线程
Runnable runnable3 = new Runnable() {
@Override
public void run() {
myServer(3);
}
};
//4号线程
Runnable runnable4 = new Runnable() {
@Override
public void run() {
myServer(4);
}
};
//5号线程
Runnable runnable5 = new Runnable() {
@Override
public void run() {
myServer(5);
}
};
//6号线程
Runnable runnable6 = new Runnable() {
@Override
public void run() {
myServer(6);
}
};
//7号线程
Runnable runnable7 = new Runnable() {
@Override
public void run() {
myServer(7);
}
};
//8号线程
Runnable runnable8 = new Runnable() {
@Override
public void run() {
myServer(8);
}
};
//9号线程
Runnable runnable9 = new Runnable() {
@Override
public void run() {
myServer(9);
}
};
//10号线程
Runnable runnable10 = new Runnable() {
@Override
public void run() {
myServer(10);
}
};
//普通线程开启方案
public void btn1(View view) {
new Thread(runnable1).start();
new Thread(runnable2).start();
new Thread(runnable3).start();
new Thread(runnable4).start();
new Thread(runnable5).start();
new Thread(runnable6).start();
new Thread(runnable7).start();
new Thread(runnable8).start();
new Thread(runnable9).start();
new Thread(runnable10).start();
}
//创建一个使用单个 worker 线程的 Executor,以无界队列方式来运行该线程。
public void btn2(View view) {
threadExecute(Executors.newSingleThreadExecutor());
}
//创建一个可重用固定线程数的线程池,以共享的无界队列方式来运行这些线程。
public void btn3(View view) {
ExecutorService executorService = Executors.newFixedThreadPool(4);
threadExecute(executorService);
}
//创建一个可根据需要创建新线程的线程池,但是在以前构造的线程可用时将重用它们
public void btn4(View view) {
ExecutorService executorService = Executors.newCachedThreadPool();
threadExecute(executorService);
}
//创建一个线程池,它可安排在给定延迟后运行命令或者定期地执行。
public void btn5(View view) {
ScheduledExecutorService executorService = Executors.newScheduledThreadPool(5);
executorService.schedule(runnable1, 1000, TimeUnit.MILLISECONDS);
executorService.schedule(runnable2, 1000, TimeUnit.MILLISECONDS);
executorService.schedule(runnable3, 1000, TimeUnit.MILLISECONDS);
executorService.schedule(runnable4, 1000, TimeUnit.MILLISECONDS);
executorService.schedule(runnable5, 1000, TimeUnit.MILLISECONDS);
executorService.schedule(runnable6, 1000, TimeUnit.MILLISECONDS);
executorService.schedule(runnable7, 1000, TimeUnit.MILLISECONDS);
executorService.schedule(runnable8, 1000, TimeUnit.MILLISECONDS);
executorService.schedule(runnable9, 1000, TimeUnit.MILLISECONDS);
executorService.schedule(runnable10, 1000, TimeUnit.MILLISECONDS);
}
//执行线程池
public void threadExecute(ExecutorService executorService) {
executorService.execute(runnable1);
executorService.execute(runnable2);
executorService.execute(runnable3);
executorService.execute(runnable4);
executorService.execute(runnable5);
executorService.execute(runnable6);
executorService.execute(runnable7);
executorService.execute(runnable8);
executorService.execute(runnable9);
executorService.execute(runnable10);
}
}